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A position encounter-evasion differential game with non-stationary geometric 
constraints on the players’ controls is analyzed. It is proved that the alternat- 
ive is valid for this game, stating that either the position encounter game or 

the position evasion game is always solvable. The proof uses constructions an- 
alogous to the corresponding ones from Cl]. 

1. Let the behavior of a controlled system E be described by the equation 

2’ = f (t, s, IL, 1.), 1‘ i=- KP, r ez .Rq (1.1) 

Here z is the system’s n -dimensional phase vector; u and v are the controls of 
the first and second players, respectively. Let St (KS) be the space of all nonempty 
compacta in RS with the Hausdorff metric 

h: Q (P) X 61 (KS) --* R1{ 
h (A, B) = rnin {E > 0 ) A C B $- S,, B C A -J- S,} 

Let the measurable multivalued mappings (see [2,3y 

P: Hi - Q (HP), Q: 1{1 + Q (fi”r) 

be specified, We take it that at each instant 1 the players choose their own controls 
u (t) and 2’ (l) from sets P (t) and Q (t) , respectively. 

We assume that the function f (. , X, II, 2.): H1 -+ NT1 is measurable for all 2: = HIi, 
u f KP, u E. I{cI, while the function f (I, ‘ , . , .): K'" X IF X R4 -+ Rn is continu- 

ousforany r=H1. By Llloc we denote the set of all locally Lebesgue - summable 

functions g: R1 - Nr. Let the inequality 

1 I (t, :c, IL, 7.) - f (1, y, 11, l.1 I < h (0 I d - ?I I (1.2) 

where the function h (=) E .&r”’ and is nonnegative, be fulfilled for all z, :/ il K”, 
u E P (t) and n f Q (l) . 

We assume that the inequality 

) f (f, .z, II, 2.) I ,G k (d(f + 1 z 1) (1.3) 

is valid for all z E K”, 71 E P (t) and t: E Q (r) where the function k (-) E J,L’Oc 
and is nonnegative. 

We take it that the saddle point condition in the small game (see [llf is fulfilled 

in the following form: 
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max min (s,f (t, 5, U, v)) = min max (s, f (t, 5, u, 21)) 
vCzQ(t) uC9-Xo u~P(t) VG Q Ct) (1.4) 

for any z, s E IV’ and for almost all t E R1 . 
By P (+ i tl, ts) we denote the set of all measurable branches of mapping P: 121 -.+ 

P (W on tlie halfopen interval [tl, tz) . By the theorem on measurable selectors 
(see [2,3U this set is not empty. 
F’ (* 1 k O”) 

A mapping which associates a nonempty set from 
with an arbitrary position (t, z) is called the first player’s strategy U + 

u (. I t, r) . The symbol (J (. ( tl, tz) and the second player’s strategy V + V (- 1 t, 
4 are defined analogously. 

Suppose that the first player has chosen a strategy U f U (9 1 t, 2). We consider 
a partitioning A of the semiaxis [to, 00) into a system of half-open intervals of the 
form Xi < t < aide, i = 0, 1, 2, . . ., t, = zot it - 00 ag i --+ cu. We denote 1 A 

I = supi (%l - zi). Let v (. ) E Q (- 1 to, CO) be an arbitary realization of the second 

player’s operations, We consider the ordinary differential equation 

5’ = f(l, I, ui (t), 2‘ (I)), Ti ‘< t < Tifl 

ui (.) E u (. 1 ti, 32 (Ti)), i = 0, 1, 2, * * . 

x (to) = ro 

This equation has a solution z (t) = z (t; to, zo, U, v f. p, continuable onto Ito, w) , 
which is called the Euler polygonal line generated by the first player’s strategy U + 
U (a 1 t, z).). Every function x (a) for which we can find, on any finite interval lo 

< t < tl. , a sequence (zh. (=)I of Euler polygonal lines 2h: (2) = xi; (t; to, X8, fJ, 
ub ( e))tsuch that it converges uniformly to 2 (* 1 on the interval to d t < tl as 1 A(“) 

1 --) 0, x0& -iTo, k+oo, is called a motion z (t) = 5 (t; to, x0, V) generated 

by the first player’s strategy rj-sU(*lt,z) . The motion generated by the sec- 

ond player’s strategy V + V (. I t, z) is defined analogously. 
Let the nonempty closed sets MC and NC be prescribed in position space JRnir. 

The encounter-evasion game is put together from the following two problems. 

P r o b 1 e m 1. Find the strategy UC + UC (. 1 t, X) which ensures the contact 

0, x (0) f NC, to G t < T, (T, x (7’)) E MC 

(t, x ft)f e MC, to < t < t 

for all motions 2 (f) = 5 (t; to, zo, U”). 
Problem 2. Find open neighborhoods H (NJ and C (M,) of sets &C 

and MC and the strategy VC -+- VC (v 1 t, s), such that the contact (f, x (l)) E: H 

(NC), to < t < T, it, t (7)) f G (M,) is excluded for aU motions r (t) = x (t; to, ro, 
I’C) . 

When the set Me lies wholly in the halfspace (t ES Rl 1 t < T) we speak of 

Problem 1 as the problem of encounter with set M, inside set Nc by the instant T 

and we speak of Problem 2 as the problem of evading M, inside NC up to the inst- 

ant T. 

2. Let conditions (1.2) and (1.3) be fulfilled. We consider the differential in- 

clusion 
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It obviously has a solution it: (*), continuable onto It,,, CG) , satisfying the initial 
condition 2 (to) = zo. It can be shown that the inequality 

I f (I, T (4, u, 2.1 I G m0 (4 (2.2) 

for all u f P (t) and u EZ Q (t) is valid for any solution r~: (+ ) of inclusion (2.1). 
Bound (2.2) is uniform for all positions (ta, x0) from some bounded domain G of space 

R”” . Here the function m”(* ) E L,‘” and depends only on domain C. 

The nonstationarity of the constraints on the player’s controls leads to the follow- 
ing modification of the definition of stability (see [lj). We say that a set W c .l?“+’ 

is u -stable if for any position (f *, 4 E ET, any instant t+ > t, and any control 2;* 
(*) e Q 1. f by t*) of the second player there exists a solution r (t), t# < t < t* , of 

the inclusion 

with initial condition z+ (t*) = z*, such that (P, z (t*)) E W or (9, z (t*)) E dl 
for some z* E [t*, t*l. We say that a set w c: BQ+~ is 2‘ -stable if for any posit- 

ion (t*, Q) E N’, and instant l*> tx. and any control I(* (s) E P(* It*, t*) of the 
first player there exists a solution z (t), t* d I --=: t* , of the inclusion 

Cc- E COllV {f(t, x, u* (t),-Z-; 2’ E Q (l)j 

with initial condition 5 (t*) = z*, such that CL*, z CL*)) E I;ti‘ or (r*, 2 (T*)) & H 

(NE1 for some z* E [tx, t*J. The property of u -stability ( 2’ -stability) of set E’ 

is defined with respect to a prescribed closed set MC (with respect to a prescribed 

open neighborhood B CLVv,, of a prescribed set AT, >. Such a definition of stability 

properties, differing from the analogous definition in [I], does not alter the following 
important property, 

L e m m a 1. If set W is u -stable ( B -stable), then its closure 3’ is E( - 

stable ( 2’ -stable). 
We now define the first player’s extremal strategy 0’ +- Ue (. I r, z) . Let (t*, r*) 

be an arbitrary position and let set tl* c H”+l be closed. We consider the hyperplane 
rt* = {(t, z) E IPl 1 t = t*) , If Pf, rj TV = (;t, , then we set U” (‘1 t*, z+) = P 

(. I t*, Q=J); if I’l* n W =h 4, then by CO* we denote the vector of the section VV (r,) 

of set NT by hyperplane I’k+ I which lies closest to (I*, ZZ*). Then 

v”(-~t*,“*)=(~~*i~)EPi~/iy.OC1L.~~~j~5*-W*rf~tr~~u*~t),8)) = 

min max (2* - o*, f (f, X*, I’, 7.))) 

uayt) GiQ(I) 

The second player’s extremal strategy is defined analogously. Namely, if rra r! ST‘ 

= i+ , thenweset v”(.it*,ak)=Q(.I~*,OO) ;if rt,fiW.#@ , then 

vet-l I*, x*) = {v* (4) E Q (.I t*, 00 ru~gl,‘“* - m*, f 09 Z*vk y* 0))) = 

The symbols w* and l?f* here have the same meaning as above. Using Filippov’s 

theorem (see f3]), it is easy to prove that these definitions are well posed. 

3. Let the function z (L), t > 1, , satisfy the equation 
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x’ = f (f, 2, u* (t), 2, (O), x @*I = 2* 

and let the function y (t): t 2 t* , satisfy the differential inclusion 

y’ E conv {f (t, y, u, 2‘* (0); u 6% p (t)}, Y O*) = Y* 

Here the function z (a) E Q (+ I t*, w) is arbitrary, while u* (-) E P (- 1 t*, 00) and 

y* f*) E Q (* 1 k, ~0) have been chosen from the conditions 

s* = x* - Y* 

max (s*, f (t, 5*, u*(t), 2~)) = min 
WEQW 

max (s*, f (t, x*, u, v)) 
u=‘(O =QV) 

m$,,(+ f (t, z*,u,u*@))) = max min (So, f (t, 5*, u, P)) 
VEQU) u~J=(t) 

We denote p (t) = I cc (t) - Y (4 1. 

L e m m a 2. The fo~owing estimate: 
t t 

(3.1) 

is valid and is ur~form for all (t*, zc*) and (t*, y*) from some bounded domain G C 
Rn+l . Here 

ltf (1) =clgh (i) +Sm”(t), g- diamG, ~(t,, t) i = m”(~)df 

i 

where the function m” (-) is from (2.2) and function h (-) is from (1.2). 
The proof of this statement differs only in certain details from that of the analog- 

ous statement in [l]. 

4. The following barrier properties of extremal strategies enable us to prove the 
theorem on the alternative. 

Lemma 3. Let WCR n+l be a closed u -stable set, Ue -+ U” (s t t* 4 
be an extremal strategy and (to, zU) ez W . Then the inclusion (t, 2 (t)) en W is 
fulfilled for any motion x (t) = x (t; to, XO, U”) up to the contact (z, x (7)) E Mc , 

This statement can be proved in the same way as the analogous statement in I[l], 
except only that instead of the auxiliary bound (15.1) in [l] we need to use the inequal- 

ity 

t*qt<t*-tt*. ‘Ph_ = ‘uPisuP (k) Ti 

where ri(‘) are the points of partitioning A(‘) corresponding to the polygonal line 
ZVk (t) = 2k (t; to, x,,‘, u”, Uk (*))* This inequa~~ is a direct consequence of the U- 

stability of set W and of Lemma 2. Completely analogously we obtain 
L e m m a 4. If a closed set IV E Pi1 is u-stable, V + Ve (. 1 t, x) is an 

extremal strategy and (to, x0) E W , then the inclusion (t, x (t)) es W is fulfilled 
for any motion r (t) = 2 (t; lo. x0. Fe) up to the instant r, when (r, x (T)) eB (NJ , 

The use of Lemmas 3 and 4 and a literal repetition of the arguments in Sections 
16 and 17 of [l] lead to the following theorem. 
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T h e o r e m 1. Let an initial position (to, Q,) be given and an instant T >, to 
be chosen. Then either a strategy UC + UC (. 1 t, X) exists, solving Problem 1 on en- 

camter with M, inside Ne by the instant ‘1’ , or open neighborhoods H (NC) and 

G (1M,) of sets NO and M, and a strategy Vc t- Ve (*I t, z) exist, solving Problem 

2 on evading M, inside NC up to instant T,. 

N o t e. The constructions presented are not changed if we use single-valued strat- 

egies instead of multivalued ones, i. e., if we define the first (second) player’s strategy 
as a mapping which associates a certain function from P (.I t, CQ) (Q (-1 t, 00)) with 

a arbitrary position (t, 2) . 

In conclusion the author thanks N. N. Krasovskii, A. I. Subbotin and M. S. Nikol’- 

skii for attention to the work. 
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